metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1*H*-Benzotriazol-3-ium (1*H*-benzotriazole- κN^3)trichloridocobaltate(II) monohydrate: a reformulation

Lesław Sieroń

Institute of General & Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland Correspondence e-mail: Isieron@p.lodz.pl

Received 14 November 2007; accepted 25 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 11.6.

The asymmetric unit of the title compound, $(C_6H_6N_3)$ -[CoCl₃($C_6H_5N_3$)]·H₂O, contains two crystallographically independent cations, two anions and two water molecules. The structure has been reported previously [Zhang, Li, Wang, Xie, Wang & Shen (2004). *Acta Cryst* E60, m498–m500] as a neutral cobalt(III) complex accompanied by unprotonated benzotriazole molecules and here has been redetermined as an anionic cobalt(II) complex accompanied by protonated benzotriazole cations. For both complex anions, a tetrahedral CoNCl₃ geometry arises. A network of N–H···O, N–H···Cl, O– H···O and O–H···Cl hydrogen bonds helps to establish the packing.

Related literature

For the previous stucture, see: Zhang *et al.* (2004). For related Co(II)-containing structures, see: Hahn *et al.* (1997); Krawczyk & Gdaniec (2005); Pan & Xu (2004); Zhang *et al.* (2006);

Experimental

Crystal data

 $\begin{array}{l} (C_{6}H_{6}N_{3})[CoCl_{3}(C_{6}H_{5}N_{3})]\cdot H_{2}O\\ M_{r} = 422.56\\ \text{Triclinic, }P1\\ a = 6.8760 \ (8) \ \text{\AA}\\ b = 7.8033 \ (12) \ \text{\AA}\\ c = 16.657 \ (3) \ \text{\AA}\\ \alpha = 95.450 \ (13)^{\circ}\\ \beta = 95.962 \ (8)^{\circ} \end{array}$

 $\gamma = 103.989 (9)^{\circ}$ $V = 855.8 (2) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 1.48 \text{ mm}^{-1}$ T = 293 (2) K $0.40 \times 0.40 \times 0.20 \text{ mm}$

Data collection

```
Bruker P4 diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.611, T_{\max} = 0.744
4906 measured reflections
4846 independent reflections
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.078$	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
4846 reflections	Absolute structure: Flack (1983)
417 parameters	920 Friedel pairs
3 restraints	Flack parameter: -0.008 (13)

4526 reflections with $I > 2\sigma(I)$

3 standard reflections

every 100 reflections

intensity decay: none

 $R_{\rm int} = 0.078$

Table 1

Selected bond lengths (Å).

Co1-Cl1	2.2649 (13)	Co2-Cl4	2.2441 (13)
Co1-Cl2	2.2616 (13)	Co2-Cl5	2.2450 (15)
Co1-Cl3	2.2195 (16)	Co2-Cl6	2.2584 (16)
Co1-N1	2.027 (3)	Co2-N11	2.022 (3)

Table 2	-
Hydrogen-bond geometry	۲ (Å

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1B \cdots Cl6$	0.82	2.79	3.279 (5)	120
$O2-H2A\cdots O1^{i}$	0.82	2.41	3.142 (7)	148
$O2-H2B\cdots Cl6$	0.82	2.52	3.295 (5)	159
$N3-H3\cdots O2^{ii}$	0.86	1.87	2.721 (4)	173
N13-H13···Cl2 ⁱⁱⁱ	0.86	2.28	3.127 (3)	169
$N21 - H21 \cdot \cdot \cdot Cl4$	0.86	2.80	3.458 (4)	134
$N21 - H21 \cdots Cl6^{iv}$	0.86	2.75	3.316 (4)	125
$N23-H23\cdots Cl1^{v}$	0.86	2.30	3.123 (3)	160
$N31 - H31 \cdot \cdot \cdot Cl3^{vi}$	0.86	2.61	3.214 (4)	128
$N33-H33\cdotsO1^{i}$	0.86	1.79	2.646 (5)	170

°).

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) x, y, z - 1; (iv) x + 1, y, z; (v) x + 1, y + 1, z; (vi) x - 1, y + 1, z - 1.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL* (Bruker, 2003); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2664).

References

Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.
- Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967-o2969.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zhang, Z.-F., Li, L.-X., Wang, X.-Q., Xie, C.-Z., Wang, R.-J. & Shen, G.-Q. (2004). Acta Cryst. E60, m498–m500.

Zhang, G., Yang, G., Wu, N. & Ma, J. S. (2006). Cryst. Growth Des. 6, 229-234.

Acta Cryst. (2008). E64, m58 [doi:10.1107/S1600536807063131]

1*H*-Benzotriazol-3-ium (1*H*-benzotriazole- κN^3)trichloridocobaltate(II) monohydrate: a reformulation

L. Sieron

Comment

The crystal structure of the salt-like title compound, (I), $C_6H_6N_3^+$.[CoCl₃($C_6H_5N_3$)]⁻.H₂O, was originally modelled as a [CoCl₃($C_6H_5N_3$)].C₆H₅N₃.H₂O complex (Zhang *et al.*, 2004). A few facts point that the structure was incorrectly described as Co^{III} instead of Co^{II} complex. The blue colour of the crystal and a tetrahedral coordination geometry around the central metal atom is typical for the Co^{II}Cl₃N chromophore, *e.g.* in pyridinium trichloro-pyridine-cobalt(II) (Hahn *et al.*, 1997), quinolinium trichloro-quinoline-cobalt(II) (Pan & Xu, 2004) and 2-aminopyridinium (2-aminopyridine)-trichloro-cobalt(II) (Zhang *et al.*, 2006).

A decrease of the metal oxidation number in (I) from III to II requires the presence of an additional proton for charge balance. In fact, an analysis of difference Fourier maps has shown two peaks in the positions expected for missing benzotriazole H atoms (N–Q = 0.85 and 0.89 Å). Both of these are involved in short, strong N–H···O_{water} hydrogen bonds which confirms the supposition (Fig. 1). The N–N bond lengths in the benzimidazolium cations are practically equalized and range from 1.309 (4) to 1.316 (5) Å, indicating full delocalization of their π electrons, which is not observed in neutral benzotriazole molecules (Krawczyk & Gdaniec, 2005). The metal bond distances and hydrogen bonds are listed in Tables 1 and 2, respectively.

Experimental

Due to the unsuccessful attempts at the synthesis of (I), the deposited structure factors and other data have been taken from the original paper of Zhang *et al.* (2004).

Refinement

All H atoms were located in difference Fourier syntheses but were repositioned with ideal geometry (C–H = 0.93, N–H = 0.86 and O–H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. A view of (I), showing displacement ellipsoids for the non-H atoms drawn at the 30% probability level.

1*H*-Benzotriazol-3-ium (1*H*-benzotriazole- κN^3)trichloridocobalt(II) monohydrate

Crystal data

(C ₆ H ₆ N ₃)[CoCl ₃ (C ₆ H ₅ N ₃)]·H ₂ O	Z = 2
$M_r = 422.56$	$F_{000} = 426$
Triclinic, P1	$D_{\rm x} = 1.640 {\rm ~Mg~m}^{-3}$
Hall symbol: P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.8760 (8) Å	Cell parameters from 28 reflections
b = 7.8033 (12) Å	$\theta = 5.3 - 12.6^{\circ}$
c = 16.657 (3) Å	$\mu = 1.48 \text{ mm}^{-1}$
$\alpha = 95.450 \ (13)^{\circ}$	T = 293 (2) K
$\beta = 95.962 \ (8)^{\circ}$	Prism, blue
$\gamma = 103.989 \ (9)^{\circ}$	$0.40\times0.40\times0.20\ mm$
V = 855.8 (2) Å ³	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.078$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.5^{\circ}$
T = 293(2) K	$h = -8 \rightarrow 1$
ω scans	$k = -9 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -21 \rightarrow 21$
$T_{\min} = 0.611, \ T_{\max} = 0.744$	3 standard reflections
4906 measured reflections	every 100 reflections
4846 independent reflections	intensity decay: none
4526 reflections with $I > 2\sigma(I)$	

Refinement

S = 1.08

3 restraints

methods

Refinement on F^2 Hydrogen site location: difference Fourier map H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.0331P)^2 + 0.2297P]$ $R[F^2 > 2\sigma(F^2)] = 0.029$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.078$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 4846 reflections 417 parameters Extinction correction: none Absolute structure: Flack (1983), 920 Friedel pairs Primary atom site location: structure-invariant direct Flack parameter: -0.008 (13)

Secondary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.44420 (6)	0.01369 (5)	0.90042 (3)	0.0462 (1)
C11	0.1994 (2)	-0.24333 (13)	0.89041 (6)	0.0706 (3)
Cl2	0.3415 (2)	0.22168 (14)	0.97717 (6)	0.0707 (4)
C13	0.7529 (2)	-0.0156 (3)	0.93735 (8)	0.0969 (6)
N1	0.4450 (5)	0.0908 (4)	0.78758 (16)	0.0436 (8)
N2	0.3859 (5)	-0.0327 (4)	0.72406 (17)	0.0491 (9)
N3	0.3929 (5)	0.0501 (4)	0.65771 (17)	0.0487 (9)
C4	0.4831 (7)	0.3714 (6)	0.6303 (3)	0.0585 (12)
C5	0.5466 (8)	0.5379 (6)	0.6726 (3)	0.0669 (16)
C6	0.5824 (8)	0.5658 (5)	0.7580 (3)	0.0674 (15)
C7	0.5560 (6)	0.4277 (5)	0.8042 (2)	0.0560 (11)
C8	0.4911 (5)	0.2557 (4)	0.7616 (2)	0.0441 (9)
С9	0.4567 (5)	0.2298 (5)	0.6770 (2)	0.0446 (9)
Co2	0.55479 (7)	0.48473 (5)	0.39999 (3)	0.0484 (1)
Cl4	0.6620 (2)	0.24123 (14)	0.42163 (7)	0.0745 (4)
C15	0.7823 (3)	0.72314 (15)	0.46890 (8)	0.0979 (6)
C16	0.2402 (2)	0.4745 (2)	0.43067 (8)	0.0891 (5)
N11	0.5282 (5)	0.5107 (4)	0.27999 (16)	0.0445 (8)
N12	0.4780 (6)	0.3689 (4)	0.22487 (17)	0.0514 (9)
N13	0.4662 (6)	0.4279 (4)	0.15251 (17)	0.0542 (9)
C14	0.5165 (7)	0.7309 (6)	0.1018 (2)	0.0570 (11)
C15	0.5618 (8)	0.9044 (6)	0.1336 (3)	0.0630 (16)
C16	0.5992 (7)	0.9600 (5)	0.2186 (3)	0.0606 (13)
C17	0.5933 (6)	0.8414 (5)	0.2737 (2)	0.0512 (10)
C18	0.5479 (5)	0.6616 (4)	0.24206 (18)	0.0409 (9)
C19	0.5082 (6)	0.6077 (5)	0.1583 (2)	0.0453 (10)
N21	0.9897 (6)	0.4698 (4)	0.59051 (19)	0.0554 (10)
N22	1.0593 (6)	0.6201 (4)	0.6387 (2)	0.0608 (11)
N23	1.0793 (5)	0.5710 (4)	0.71148 (18)	0.0531 (9)
C24	1.0184 (7)	0.2821 (6)	0.7735 (2)	0.0581 (11)
C25	0.9546 (7)	0.1017 (6)	0.7485 (3)	0.0670 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C26	0.8995 (7)	0.0348 (6)	0.6655 (3)	0.0695 (16)	
C27	0.9026 (7)	0.1394 (5)	0.6052 (3)	0.0605 (14)	
C28	0.9658 (6)	0.3237 (5)	0.6305 (2)	0.0462 (10)	
C29	1.0242 (5)	0.3911 (5)	0.7118 (2)	0.0439 (10)	
N31	0.0523 (6)	0.8803 (5)	0.0749 (2)	0.0609 (13)	
N32	0.0951 (7)	1.0044 (5)	0.1374 (2)	0.0673 (14)	
N33	0.0884 (6)	0.9186 (5)	0.2018 (2)	0.0581 (11)	
C34	0.0247 (7)	0.5974 (7)	0.2283 (3)	0.0671 (16)	
C35	-0.0210 (9)	0.4337 (7)	0.1856 (4)	0.0788 (19)	
C36	-0.0493 (8)	0.4068 (6)	0.1003 (4)	0.0805 (18)	
C37	-0.0293 (8)	0.5435 (6)	0.0545 (3)	0.0688 (14)	
C38	0.0182 (7)	0.7128 (5)	0.0974 (2)	0.0531 (11)	
C39	0.0438 (6)	0.7406 (5)	0.1818 (2)	0.0514 (11)	
01	0.1150 (10)	0.0529 (7)	0.3557 (2)	0.127 (2)	
02	0.3201 (10)	0.8988 (6)	0.4999 (2)	0.124 (2)	
Н3	0.36100	-0.00330	0.60880	0.0580*	
H4	0.45880	0.35330	0.57380	0.0710*	
Н5	0.56690	0.63600	0.64400	0.0810*	
H6	0.62540	0.68190	0.78410	0.0810*	
H7	0.57990	0.44690	0.86070	0.0670*	
H13	0.43520	0.35920	0.10710	0.0650*	
H14	0.49230	0.69560	0.04600	0.0680*	
H15	0.56870	0.99050	0.09830	0.0760*	
H16	0.62860	1.08080	0.23720	0.0730*	
H17	0.61810	0.87790	0.32940	0.0620*	
H21	0.96190	0.46410	0.53860	0.074 (15)*	
H23	1.12300	0.64520	0.75490	0.0640*	
H24	1.05520	0.32800	0.82800	0.0700*	
H25	0.94790	0.02270	0.78710	0.0800*	
H26	0.85880	-0.08790	0.65150	0.0840*	
H27	0.86550	0.09280	0.55080	0.0730*	
H31	0.04630	0.90190	0.02520	0.0730*	
H33	0.11010	0.97010	0.25110	0.10 (2)*	
H34	0.04250	0.61440	0.28480	0.0810*	
H35	-0.03420	0.33520	0.21380	0.0940*	
H36	-0.08290	0.29080	0.07420	0.0970*	
H37	-0.04650	0.52480	-0.00210	0.0820*	
H1A	0.23890	0.07600	0.36260	0.1910*	
H1B	0.04880	0.12670	0.36090	0.1910*	
H2A	0.30780	0.97330	0.46940	0.1850*	
H2B	0.27160	0.79140	0.48810	0.1850*	
Atomic displacement parameters $(Å^2)$					

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0523 (3)	0.0539 (2)	0.0332 (2)	0.0160 (2)	0.0026 (2)	0.0071 (2)
Cl1	0.0959 (8)	0.0581 (5)	0.0467 (4)	-0.0033 (5)	0.0175 (5)	0.0019 (4)
C12	0.1015 (9)	0.0690 (6)	0.0423 (4)	0.0284 (6)	0.0096 (5)	-0.0074 (4)

C13	0.0682 (7)	0.1819 (15)	0.0594 (6)	0.0585 (9)	0.0058 (5)	0.0423 (7)
N1	0.0503 (16)	0.0458 (13)	0.0372 (12)	0.0171 (13)	0.0039 (12)	0.0076 (10)
N2	0.0596 (18)	0.0496 (14)	0.0389 (13)	0.0173 (14)	0.0029 (13)	0.0050 (11)
N3	0.0563 (18)	0.0541 (15)	0.0365 (12)	0.0166 (15)	0.0054 (13)	0.0034 (11)
C4	0.060 (2)	0.072 (2)	0.055 (2)	0.026 (2)	0.0196 (19)	0.0287 (19)
C5	0.066 (3)	0.061 (2)	0.088 (3)	0.024 (2)	0.030 (2)	0.038 (2)
C6	0.065 (3)	0.0468 (19)	0.093 (3)	0.0146 (19)	0.019 (2)	0.0109 (19)
C7	0.057 (2)	0.0533 (18)	0.0544 (19)	0.0098 (18)	0.0087 (18)	-0.0001 (15)
C8	0.0424 (17)	0.0504 (16)	0.0423 (15)	0.0161 (14)	0.0055 (14)	0.0084 (13)
C9	0.0431 (18)	0.0526 (16)	0.0426 (15)	0.0169 (15)	0.0089 (14)	0.0118 (13)
Co2	0.0625 (3)	0.0495 (2)	0.0336 (2)	0.0159 (2)	0.0033 (2)	0.0060 (2)
Cl4	0.1100 (10)	0.0605 (5)	0.0572 (5)	0.0355 (6)	-0.0038 (6)	0.0083 (4)
C15	0.1390 (14)	0.0598 (6)	0.0697 (7)	0.0027 (8)	-0.0386 (8)	-0.0015 (5)
C16	0.0837 (9)	0.1346 (11)	0.0667 (6)	0.0474 (9)	0.0314 (6)	0.0256 (7)
N11	0.0564 (17)	0.0426 (13)	0.0350 (11)	0.0145 (13)	0.0044 (12)	0.0038 (10)
N12	0.069 (2)	0.0467 (14)	0.0382 (13)	0.0191 (15)	0.0004 (14)	0.0000 (11)
N13	0.069 (2)	0.0590 (16)	0.0355 (12)	0.0233 (16)	0.0014 (14)	-0.0013 (11)
C14	0.061 (2)	0.077 (2)	0.0418 (17)	0.027 (2)	0.0099 (17)	0.0230 (17)
C15	0.067 (3)	0.073 (3)	0.062 (2)	0.029 (2)	0.017 (2)	0.035 (2)
C16	0.068 (3)	0.0489 (18)	0.069 (2)	0.0182 (19)	0.010 (2)	0.0174 (17)
C17	0.061 (2)	0.0456 (16)	0.0485 (18)	0.0161 (17)	0.0085 (17)	0.0057 (14)
C18	0.0440 (17)	0.0461 (15)	0.0353 (14)	0.0155 (14)	0.0053 (13)	0.0083 (11)
C19	0.048 (2)	0.0568 (18)	0.0362 (14)	0.0211 (16)	0.0094 (14)	0.0070 (13)
N21	0.065 (2)	0.0601 (17)	0.0392 (14)	0.0147 (16)	-0.0007 (15)	0.0087 (12)
N22	0.069 (2)	0.0514 (16)	0.0605 (19)	0.0148 (16)	-0.0018 (18)	0.0115 (14)
N23	0.0579 (19)	0.0524 (15)	0.0470 (15)	0.0168 (15)	-0.0020 (14)	-0.0018 (12)
C24	0.058 (2)	0.078 (2)	0.0472 (18)	0.028 (2)	0.0105 (18)	0.0202 (17)
C25	0.056 (2)	0.073 (3)	0.084 (3)	0.024 (2)	0.019 (2)	0.040 (2)
C26	0.055 (2)	0.0473 (19)	0.105 (4)	0.0122 (19)	0.005 (2)	0.011 (2)
C27	0.057 (2)	0.0491 (19)	0.071 (3)	0.0143 (18)	-0.003 (2)	-0.0047 (17)
C28	0.0429 (18)	0.0501 (17)	0.0452 (16)	0.0122 (15)	0.0032 (14)	0.0064 (13)
C29	0.0408 (18)	0.0527 (17)	0.0400 (15)	0.0162 (15)	0.0043 (14)	0.0044 (13)
N31	0.072 (3)	0.0657 (19)	0.0476 (16)	0.0224 (19)	0.0014 (17)	0.0150 (14)
N32	0.079 (3)	0.063 (2)	0.063 (2)	0.0251 (19)	0.0019 (19)	0.0135 (16)
N33	0.060 (2)	0.0635 (19)	0.0504 (17)	0.0182 (17)	0.0014 (15)	0.0054 (14)
C34	0.053 (2)	0.088 (3)	0.069 (3)	0.023 (2)	0.013 (2)	0.034 (2)
C35	0.069 (3)	0.066 (3)	0.109 (4)	0.019 (2)	0.019 (3)	0.036 (3)
C36	0.068 (3)	0.056 (2)	0.116 (4)	0.013 (2)	0.017 (3)	0.005 (2)
C37	0.069 (3)	0.070 (2)	0.065 (2)	0.016 (2)	0.011 (2)	-0.0019 (19)
C38	0.052 (2)	0.063 (2)	0.0476 (17)	0.0197 (18)	0.0068 (16)	0.0093 (15)
C39	0.045 (2)	0.0578 (18)	0.0526 (19)	0.0151 (17)	0.0035 (16)	0.0111 (15)
O1	0.161 (5)	0.126 (4)	0.074 (2)	0.015 (4)	0.002 (3)	-0.019 (2)
O2	0.187 (6)	0.111 (3)	0.065 (2)	0.033 (4)	0.016 (3)	-0.014 (2)

Geometric parameters (Å, °)

Co1—Cl1	2.2649 (13)	C6—C7	1.371 (6)
Co1—Cl2	2.2616 (13)	C7—C8	1.403 (5)
Co1—Cl3	2.2195 (16)	C8—C9	1.392 (5)

		<u></u>	
Col—NI	2.027 (3)	С4—Н4	0.93
Co2—Cl4	2.2441 (13)	С5—Н5	0.93
Co2—Cl5	2.2450 (15)	С6—Н6	0.93
Co2—Cl6	2.2584 (16)	С7—Н7	0.93
Co2—N11	2.022 (3)	C14—C15	1.355 (6)
O1—H1B	0.82	C14—C19	1.404 (5)
O1—H1A	0.82	C15—C16	1.419 (7)
N1—C8	1.371 (4)	C16—C17	1.361 (6)
N1—N2	1.320 (4)	C17—C18	1.399 (5)
N2—N3	1.332 (4)	C18—C19	1.397 (4)
N3—C9	1.360 (5)	C14—H14	0.93
O2—H2B	0.82	C15—H15	0.93
O2—H2A	0.82	С16—Н16	0.93
N3—H3	0.86	С17—Н17	0.93
N11—N12	1.320 (4)	C24—C25	1.378 (6)
N11—C18	1.373 (4)	C24—C29	1.393 (5)
N12—N13	1.332 (4)	C25—C26	1.409 (7)
N13—C19	1.354 (5)	C26—C27	1.352 (7)
N13—H13	0.86	C27—C28	1.407 (5)
N21—C28	1.359 (5)	C28—C29	1.386 (5)
N21—N22	1.311 (4)	C24—H24	0.93
N22—N23	1.309 (4)	C25—H25	0.93
N23—C29	1.363 (5)	С26—Н26	0.93
N21—H21	0.86	С27—Н27	0.93
N23—H23	0.86	C34—C39	1.407 (6)
N31—C38	1.366 (5)	C34—C35	1.350 (8)
N31—N32	1.310 (5)	C35—C36	1.403 (9)
N32—N33	1 316 (5)	C36—C37	1 358 (7)
N33—C39	1 349 (5)	C37—C38	1 388 (6)
N31—H31	0.86	$C_{38} - C_{39}$	1.388 (5)
N33_H33	0.86	C34—H34	0.93
C4-C5	1 365 (7)	C35H35	0.93
C4-C9	1 398 (6)	C36—H36	0.93
C5-C6	1.405 (7)	C37_H37	0.93
	1.405 (7)		110
	106.81 (5)	С5—С6—Н6	119
	113./3 (/)	C8—C7—H7	122
CII—CoI—NI	106.87 (10)	С6—С/—Н/	122
Cl2—Co1—Cl3	116.75 (6)	C15—C14—C19	115.9 (3)
Cl2—Co1—N1	105.84 (10)	C14—C15—C16	122.6 (4)
Cl3—Co1—N1	106.16 (11)	C15—C16—C17	121.8 (4)
Cl6—Co2—N11	102.70 (11)	C16—C17—C18	116.4 (3)
Cl4—Co2—Cl6	114.49 (6)	C17—C18—C19	121.4 (3)
Cl4—Co2—N11	110.22 (10)	N11—C18—C19	107.4 (3)
Cl4—Co2—Cl5	108.33 (6)	N11—C18—C17	131.2 (3)
Cl5—Co2—N11	109.56 (10)	N13—C19—C14	134.5 (3)
Cl5—Co2—Cl6	111.40 (7)	C14—C19—C18	121.8 (3)
H1A—O1—H1B	125	N13—C19—C18	103.7 (3)
N2—N1—C8	109.5 (3)	C15-C14-H14	122
Co1—N1—N2	118.5 (2)	C19—C14—H14	122

Co1—N1—C8	131.9 (2)	C16—C15—H15	119
N1—N2—N3	107.4 (3)	C14—C15—H15	119
N2—N3—C9	111.5 (3)	C15—C16—H16	119
H2A—O2—H2B	124	С17—С16—Н16	119
C9—N3—H3	124	С18—С17—Н17	122
N2—N3—H3	124	С16—С17—Н17	122
N12—N11—C18	109.6 (3)	C25—C24—C29	115.7 (3)
Co2—N11—N12	120.6 (2)	C24—C25—C26	121.3 (4)
Co2—N11—C18	129.7 (2)	C25—C26—C27	123.6 (4)
N11—N12—N13	106.7 (3)	C26—C27—C28	115.4 (4)
N12—N13—C19	112.7 (3)	N21—C28—C29	104.7 (3)
N12—N13—H13	124	N21—C28—C27	133.7 (3)
C19—N13—H13	124	C27—C28—C29	121.6 (4)
N22—N21—C28	113.5 (3)	C24—C29—C28	122.5 (4)
N21—N22—N23	104.1 (3)	N23—C29—C24	133.3 (3)
N22—N23—C29	113.6 (3)	N23—C29—C28	104.3 (3)
C28—N21—H21	123	C29—C24—H24	122
N22—N21—H21	123	C25—C24—H24	122
N22—N23—H23	123	С24—С25—Н25	119
C29—N23—H23	123	С26—С25—Н25	119
N32—N31—C38	112.6 (3)	С25—С26—Н26	118
N31—N32—N33	105.2 (3)	С27—С26—Н26	118
N32—N33—C39	112.3 (3)	С28—С27—Н27	122
C38—N31—H31	124	С26—С27—Н27	122
N32—N31—H31	124	C35—C34—C39	115.8 (5)
C39—N33—H33	124	C34—C35—C36	122.5 (5)
N32—N33—H33	124	C35—C36—C37	122.5 (5)
C5—C4—C9	116.0 (4)	C36—C37—C38	115.8 (5)
C4—C5—C6	122.1 (4)	N31—C38—C39	104.2 (3)
C5—C6—C7	122.2 (4)	N31—C38—C37	133.7 (4)
C6—C7—C8	116.4 (3)	C37—C38—C39	122.1 (4)
N1—C8—C9	107.2 (3)	C34—C39—C38	121.3 (4)
N1—C8—C7	131.9 (3)	N33—C39—C34	133.0 (4)
С7—С8—С9	120.9 (3)	N33—C39—C38	105.7 (3)
N3—C9—C8	104.5 (3)	С35—С34—Н34	122
N3—C9—C4	133.1 (3)	С39—С34—Н34	122
C4—C9—C8	122.4 (4)	С36—С35—Н35	119
С5—С4—Н4	122	С34—С35—Н35	119
С9—С4—Н4	122	С35—С36—Н36	119
С6—С5—Н5	119	С37—С36—Н36	119
С4—С5—Н5	119	С38—С37—Н37	122
С7—С6—Н6	119	С36—С37—Н37	122

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H1B···Cl6	0.82	2.79	3.279 (5)	120
O2—H2A···O1 ⁱ	0.82	2.41	3.142 (7)	148
O2—H2B···Cl6	0.82	2.52	3.295 (5)	159

N3—H3···O2 ⁱⁱ	0.86	1.87	2.721 (4)	173
N13—H13····Cl2 ⁱⁱⁱ	0.86	2.28	3.127 (3)	169
N21—H21…Cl4	0.86	2.80	3.458 (4)	134
N21—H21···Cl6 ^{iv}	0.86	2.75	3.316 (4)	125
N23—H23…Cl1 ^v	0.86	2.30	3.123 (3)	160
N31—H31···Cl3 ^{vi}	0.86	2.61	3.214 (4)	128
N33—H33…O1 ⁱ	0.86	1.79	2.646 (5)	170

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*, *z*-1; (iv) *x*+1, *y*, *z*; (v) *x*+1, *y*+1, *z*; (vi) *x*-1, *y*+1, *z*-1.

Fig. 1